DR. RAMMANOHAR LOHIA AVADH UNIVERSITY, AYODHYA

STRUCTURE OF COURSE OUTCOMES FOR M.SC. (FOUR SEMESTER PROGRAMME) SUBJECT: MATHEMATICS

Shri Lal Bahadur Shastri Degree College, Gonda

Department of Mathematics

NATIONAL EDUCATION POLICY-2020 PROGRAM OUTCOME AND COURSE OUTCOME FOR M.SC. (FOUR SEMESTER PROGRAMME)

SUBJECT: MATHEMATICS

Programme Outcomes

An M.Sc. in Mathematics can significantly enhance both students academic knowledge and their career prospects. Here are some key benefits:

- 1. Advanced Knowledge and Specialization: An M.Sc. allows students to delve deeper into specialized areas of mathematics such as algebra, analysis, statistics, applied mathematics, or mathematical modeling. This advanced knowledge can set students apart in the job market and open doors to more specialized career paths.
- 2. **Research Opportunities**: With a master's degree, students have the opportunity to engage in research, either as part of student's studies or in a professional capacity. This can lead to contributions to academic knowledge or innovative solutions to practical problems.
- 3. **Career Advancement**: An M.Sc. in Mathematics can qualify students for higher-level positions and roles with greater responsibilities in various fields such as finance, data science, academia, and technology. It can also be a stepping stone to doctoral studies if students are interested in pursuing a Ph.D.
- 4. Enhanced Problem-Solving Skills: The advanced coursework and research involved in an M.Sc. program further hone student's analytical and problem-solving skills, making students more effective in tackling complex issues.
- 5. **Higher Earning Potential**: Generally, holding a master's degree can lead to higher earning potential compared to just a bachelor's degree. Many specialized roles in finance, technology, and research offer competitive salaries to those with advanced mathematical expertise.
- 6. **Teaching and Academia**: An M.Sc. can qualify students for teaching positions at colleges and universities, as well as opportunities to engage in academic research. It also provides a solid foundation for pursuing a Ph.D., should students choose to continue in academia.
- 7. **Industry Demand**: Many industries value the advanced analytical and quantitative skills developed through an M.Sc. in Mathematics. This degree can lead to roles in high-demand fields such as data analysis, actuarial science, operations research, and software development. The practical's in computer programming language such as Python sharpens student availability to think logically. This knowledge plays a very important role in understanding the concepts and techniques of the machine learning course offered by the department.

- 8. **Professional Development**: The rigorous training and research experience gained during an M.Sc. program can enhance student's critical thinking, project management, and communication skills, which are valuable in many professional settings.
- 9. **Networking Opportunities**: Graduate programs often provide opportunities to connect with professionals, researchers, and academics in the field of mathematics, which can be valuable for career development and collaboration.
- 10. **Contributions to Innovation**: Advanced mathematical knowledge enables students to contribute to cutting-edge technologies and innovations, from developing new algorithms to solving complex scientific and engineering problems.

Overall, an M.Sc. in Mathematics offers a deeper understanding of mathematical theories and applications, enhanced career opportunities, and the potential for significant contributions to both academic and practical fields.

Course Outcomes

M.A./M.Sc. I SEMESTER-I), PAPER- I

Course Code: B030701T		Credit-5 Max.	Core			
	Marks: 25+75		paper			
Total No. of Lectures-Tutor	ials	Course T	itle: Advanced Abstract Algebra			
(inhours per week): 4+	1=5					
Course outcomes:						
1: The students will be able to	define Iso	otropic groups, solvable	e groups, cauchy's theorem for			
finite abelian group.						
2: The students will be able to c	lefine Max	timal subgroups, simple	e groups, composition series, normal			
and subnormal series, Jordan-Hol	der theorer	n, modules, Schur's le	ema, Jordan canonical and rational			
canonical forms.						
3 : The students will be able to	define Fie	ld extensions, splitting	or decomposition field, normal and			
seperable field extension, perfect f	ïeld.					
4: The students are able to analyse	4: The students are able to analyse Galois group, fundamental theorem of Galois group.					
5: The student is equipped with standard concepts and tools at advance level that will serve						
him/her well towards pursuing research in algebra.						

ADVANCED ABSTRACT ALGEBRA

M.A./M.Sc.I SEMESTER-I), PAPER- II

ADVANCED REAL ANALYSIS

Course Code:	Credit-	5 Max.	Core			
B030702T	Marks: 25+75		paper			
Total No. of Lectures-Tuto	rials (in	(Course Title: Advanced Real			
hours per week): 4+1	=5	Α	Analysis			
Course outcomes:						
1: The students will be able t	o analyse Sequenc	e and series of fun	ctions of real numbers, Uniform			
convergence.						
2: The students will be able t	o analyse Rieman	n-Stieltjes integrati	on and their properties, Relation			
between Riemann and R-S integr	between Riemann and R-S integrals.					
3: The students will be able to analyse Functions of several variables, Taylor's theorem, Young's						
Theorem and Schwarz's theorem.						
4: The students will be able to analyse Functions of bounded variation and their properties,						
Absolutely continuous functions and their properties, Relation between absolute continuity and						
function of bounded variation.						

M.A./M.Sc.I SEMESTER-I), PAPER- III

Topology

Course Code:	Credit-5 Max. Marks: 25+75		Core	
B030703T			paper	
Total No. of Lecture	es-Tutorials (in		Course Title: Topology	
hours per wee	k): 4+1=5			
Course outcomes:				
1: The students are able to analyse Topological space, open and closed sets in Topological				
space, neighborhoods, closure, interior, exterior, derived and dense sets, bases and sub-bases.				
2: The students are able to analyse Continuous functions and Homeomorphism, first and second				
countable spaces and separability.				
3 : The students are able to understand various concepts like: T ₀ , T ₁ , T ₂ , T ₃ , T ₄ spaces and basic				

properties.

4: The students are able to understand various concepts like: Compactness, Connectedness and Tychonoff product topology.

5: It provides the students useful tools for studying local properties of a space. Without the knowledge of topology, it is rather impossible even to conceive the idea of learning mathematics at higher level.

M.A./M.Sc.I SEMESTER-I), PAPER- IV

Mathematical Modelling

Course Code: B030704T	Credit-5 Max. Marks:	25+75	First Elective paper	
Total No. of Lectures	Tutorials (in C	ourse Title: Math	ematical Modelling	
hours per week):	4+1=5			
Course outcomes:				
1: The students will be abl	e to convert a real-world pr	oblem into a mathe	matical model.	
2: The students will be able	e to analyse mathematical r	nodelling: need, cla	assification, modelling	
process, Elementary math	ematical models, Role of	of mathematics in	problem solving and Single	
speciespopulation model.				
3: The students will be able	to do mathematical model	ling through ordina	ry differential equations	
of first order and second or	der and Some applications	in economics, ecolo	ogy, Modelling in	
epidemiology(SIS, SIR, SI	RS models) and basic repro	duction number.		
4: The students will be able to do mathematical modelling through difference equations,				
Somesimple models, Basic	theory of linear difference	equations with con	stant coefficients.	
5: The students will be able	to do methematical model			

M.A./M.Sc.I SEMESTER-I), PAPER- IV

Riemannian Geometry

Course Code:	Credit-5 Max. Marks: 25+75		First Elective paper		
B030705T					
Total No. of Lectures-Tutorials (inhours		COURSE TITLE: Riemannian Geometry			
per week): 4+1=5					
Course outcomes:					
1: Students will be able to define Riemannian space, metric, Curvature of a curve, curvature					

ofcurve and Geodesic and its applications.

2: Students will be able to define Congruences of curves, Ricci coefficient of rotation,

Curvatureof a congruence, Geodesic congruence, normal and irrotational congruence.

3: Students will be able to define congruences and orthogonal ennuples and Ricci's coefficients ofrotation, curvature of congruence.

4: Students will be able to analyse Curvature tensor and Ricci tensor, Bianchi's Identity, Theorem of schur, Projective and Conformal transformation, Weyl's Curvature tensor and Conformal curvaturetensor with their fundamental properties.

5: Students will be able to analyse Hypersurfaces, Meusnier's theorem, Line of curvature.

M.A./M.Sc.I SEMESTER-I), PAPER- IV

Fuzzy Sets

Course Code: B030706T	Credit-5 Max. Marks: 25+75		First Elective paper	
Total No. of Lectures-Tutor	als (inhours per	Course Title: H	Fuzzy Sets	
week): 4+1=5 Course outcomes:				
1: The students will be able	to define Fuzzy sets	and representation	s of Membership functions and	
types of Fuzzy sets.				
2: The students will be able to define Fuzzy numbers, Fuzzy cardinality, Fuzzy				
arithmeticoperations on intervals and Fuzzy equations.				
3: Students will be able to analyse Fuzzy relations.				
4: Students will be able to define Fuzziness, Shannon Entropy, Fuzzy linear programming				
problems.				

M.A./M.Sc.I SEMESTER-I), PAPER- V

PROGRAMMING IN PYTHON-I

Course Code: B030707P	ourse Code: B030707P Credit-5 Max.		Second Elective Paper	
	Marks: 25+75			
Total No. of Lectures-Practic	als (in hoursper	Course Title: PROGRAMMING IN		
week): 4 + 2		PYTHON-I		
Course outcomes:				
1: The students will be able	to describe the basic p	principles of Py	thon programming language.	

2: The students will be able to implement object-oriented concepts.

3: The students will be able to making use of software easily right out of the box.

4: The students will be able to experience with an interpreted language.

M.A./M.Sc.I SEMESTER-I), PAPER- V

Computational Techniques using C

Course Code: B030708P	Credit-5		Second Elective Paper	
	Max. Marks: 50 + 50			
Total No. of Lectures-Pract	icals (in hours per	Course	Title: Computational	
week): 4 + 2		Techniq	ques using C	
Course outcomes:				
1: The students will be ab	le to learn and use basic prin	nciples of	f C programming language.	
2: The students will be ab	le to define and manage v	arious ty	pe of data and data- structures	
basedon problems subject	domain.			
3: The students will be able to have ability to handle possible errors during program				
execution.				
4: The students will be able to define various types of functions and able to apply various types				
ofdecision making, statements/loops.				
5 : The students will be able to able to apply in various fields of Mathematics.				

M.A./M.Sc.I (SEMESTER-II), PAPER-I

Analytical Dynamics

Course Code:	Credit-5		Core paper	
B030801T	Max. Marks: 25+	-75		
Total No. of Lectures	s-Tutorials (in	Course Title: A	nalytical Dynamics	
hours per week): 4+1	1=5			
Course outcomes:				
1: The students will be able to classify dynamical systems, and define generalized				
coordinates, Classification of Dynamical System and D'Alembert's Principle, Lagrange's equations.				
2: The students will be able to define Hamilton's canonical equations, Hamilton's principle				
and principle of least action.				
3: The students will be able to define two-dimensional motion of rigid bodies, Euler's				
dynamical equations for	or the motion of a rig	gid body about an a	xis, theory of small oscillations and	

examples.

4: The students will be able to define Lagrange Bracket, Poisson Bracket, Canonical Transformation, Jacobi Identity, Hamilton Jacobi Theorem and Poisson's Theorem.

M.A./M.Sc.I (SEMESTER-II), PAPER- II

Theory of Differential Equation and BoundaryValue Problem

Course Code: B030802T	Credit-5 Max. Marks: 25+75		Core paper	
Total No. of Lectures-Tut	torials (in	Course Title: T	Theory of Differential Equation and	
hours per week): 4+1=5		BoundaryValu	e Problem	
Course outcomes:				
1: The students will be	able to analyse La	place's Equation,	Harmonic functions, Heat and Wave	
equationsand their Fundam	nental solutions.			
2: The students will be al	2: The students will be able to analyse Existence and uniqueness theorem, initial value problems and			
picardes theorem, Peano's existence theorem and corollaries.				
3: The students will be a	will be able to analyse Ordinary Differential Equations of Sturm-Liouville boundary			
valueproblem, Green's fun	eproblem, Green's function, Poisson representation formula.			
4: The students will be	e able to analyse Application of Laplace transform to solve differentia			
equations and Fourier transforms to boundary value Problems.				

M.A./M.Sc.I (SEMESTER-II), PAPER- III

Measure and Integration

Course Code: B030803T	Credit-5 Max. Marks: 25+75		Core paper	
Total No. of Lectures-Tutor	Total No. of Lectures-Tutorials (inhours		e: Measure and Integration	
per week): 4+1=5				
Course outcomes:				
1 : Students will be efficie	ent to know the	measurability of	a set calculating meter and inner	
measure only meter measure	e gives the meas	urability of a set.	Student will easily classify some	
measurable and non -measurable sets.				
2: Students will enable themselves to know measurable and non-measurable functions.				
Countability and measurability of a set is clearly known to students with Boral.				
3: Students will be defined Lebesgue integral, Relation between Riemann integral and				
Lebesgueintegral, Lebesgue	integral of bound	ded measurable for	unction and it's properties.	

4: The students will be able to analyse *L*^{*p*}-space, some basic definitions and theorem, Holder's inequality, Minikowski inequality, Schwarz's and Jensen Inequality.

M.A./M.Sc.I (SEMESTER-II), PAPER- IV

HISTORY OF MATHEMATICS

Course	Credit-5		Third Elective Paper	
Code:B030804T	Max. Marks: 25+75			
Total No. of Lectures-Tutorials (in hoursper Cours		e Title: HISTORY OF MATHEMATICS		
week): 4+1=5				
Course outcomes:				
1: The students will	l be able to know that how the	concepts h	nave been developed in Mathematics.	

M.A./M.Sc.I (SEMESTER-II), PAPER- IV

Indian Contribution in Mathematics

Course	Credit-5	Third Elective Paper		
Code:B030805T	Max. Marks: 25+75			
Total No. of Lectures-Tutorials (in		Course Title: Indian Contribution in		
hours	hoursper week): 4+1=5 Mathematics			
Course outcomes:				
1: The students will be able to know Vedic period and some Indian contribution in Mathematics.				

M.A./M.Sc.I (SEMESTER-II), PAPER- IV

Elementary Statistics

Course Code:	Credit-5		Third Elective paper
B030806T	Max. Marks: 25+75	Max. Marks: 25+75	
Total No. of Lectu	res-Tutorials (inhours	Course Title: Ele	mentary Statistics
per week): 4+1=5	er week): 4+1=5		
Course outcomes:			
1: Students will lear	n basic concepts of statistics us	ed in various disciplines	S
2: Students will be able to study various measures of dispersion like range, mean deviation,			
quartiledeviation and standard deviation.			

3: Students will be able to analyze and solve various concepts related to probability and probability distributions.

4: Students will be able to learn and use concepts confidence intervals, hypothesis testing, linear Regression.

M.A./M.Sc.I (SEMESTER-II), PAPER- IV

PROGRAMMING IN PYTHON-II

Course Code: B030807P	Max. Marks: 50 +	50	Fourth Elective Paper
Total No. of Lectures-Practicals (in hoursper		Course Title: PRO	GRAMMING IN
week): 4 + 2		PYTHON-II	
Course outcomes:			
1: The students will be able to analyze the data by plotting Bar chart/Pie chart/Histogram using			
Pythonprogramming.			
2: The students will be able	to solve simultaneous	s equations by using	Python Programming.
3: The students will be able to solve ordinary and partial differential equations by using			
PythonProgramming.			
4: The students will be able to find roots of equations by using different methods with			
Python programming.			

M.A./M.Sc.I (SEMESTER-III), PAPER- I

Functional Analysis

Course Code:	Credit-5		Core Paper
B030901T	Max. Marks: 25+75		
Total No. of Lectures	Total No. of Lectures-Tutorials (in Course Title: Function		onal Analysis
hours per week): 4+1	.=5		
Course outcomes:			
1: The students will be	able to analyse Norm	ed linear space, Banach s	space.
2: The students will I	2: The students will be able to analyse l^n , l_p, l_2 and l_∞ Banach spaces, Banach space C(paces, Banach space C(X),
Riesz			
	Р		
- Fisher theorem, Continous and Bounded linear Transformation.			
3: The students will be able to analyse Isometric Isomarphism, Topological Isomarphis		Topological Isomarphism,	

Equivalent norm, Riesz- Lemma, Convexity, Hahn- Banach Theorem, Open mapping Theorem, Closed Graph Theorem.

4: The students will be able to analyse Hilbert space, Riesz representation theorem.

M.A./M.Sc.I (SEMESTER-III), PAPER- II

INTEGRAL EQUATIONS

Course	Credit-4 Core paper		Core paper
Code:B030902T	Max. Marks: 25+75	Max. Marks: 25+75	
Total No. of Lectu	Total No. of Lectures-Tutorials (in hoursper Course Title: IN		GRAL EQUATIONS
week): 4			
Course outcomes:			
1 .Understand the m	nethods to reduce Initial value pro	blems associated with l	inear differential equations
tovarious integral ed	tovarious integral equations.		
2.Categories and solve different integral equations using various techniques.			
3. The students will be able to analyze Fredholm and Volterra integral equations, Solution by the			
successive approxim	successive approximations, Neumann series and resolvent kernel, equations with convolution type		
kernels.			
4. The students will be able to analyze and solve the solution of integral equations by transform		uations by transform	
methods.			

M.A./M.Sc.I (SEMESTER-III), PAPER- III

MACHINE LEARNING

Course Code:	Credits-4		Core paper
B030903T	Marks: 25+75		
Total No. of Lectures	(in hours per week) –4	Course Title: MA	CHINE LEARNING
Course outcomes:			
1: The students will be	able to understand the need for	r machine learning fo	or various problem solving. 2:
The students will be abl	e to understand a wide variety	y of learning algorith	ms and know how to evaluate
models generated from a	lata.		
3 : The students will be a	ble to understand the latest tre	ends in machine learn	ing.
4: The students will be able to identify appropriate machine learning algorithms for general real			
world problems and app	ly these algorithms to solve th	ese problems.	

M.A./M.Sc.I (SEMESTER-III), PAPER- III

GENERAL RELATIVITY

Course Code:	Credits-4		Fifth Elective paper
B030904T	Max. Marks: 25+75		
Total No. of Lectures	s (in hours perweek) – 4	Course Tit	tle: GENERAL RELATIVITY
Course outcomes:			
1: The students will	be able to understand metric tens	sor and Rier	mannian space.
2: The students	will be able to learn Ricci	tensor, Bi	ianchi Identities, examples of
symmetricspace tim	e.		
3: The students wi	ll be able to understand Einste	in's field e	equation, gravitational waves in
empty space.			

M.A./M.Sc.I (SEMESTER-III), PAPER- III

FINSLER GEOMETRY

Course Code:	Max. Marks: 25+75		Fifth Elective paper	
B030905T				
Total No. of Lectures ((in hours perweek) –	Course Title: Finsler S	pace	
4				
Course outcomes:				
1: The students will be a	ble to analyse Finsler sp	ace and homogeneity prop	perties of g_{ij} and C_{ijk} ,	
Geodesics.				
2: The students will be al	ble to analyse Fundamer	ntal postulates of Cartan, G	Cartan covariant	
derivatives, Properties of Cartan covariant derivatives, Berwald's connection, Covariant				
derivatives of Berwald's and it's properties, Relation between connection coefficients of Cartan				
and Berwald.				
3: The students will be able to find Commutation formulae, The three Curvature tensors of				
Cartan, Identities satisfied by the Curvature tensors and Bianchi identities.				
4: The students will be able to analyse Curvature tensor of Berwald, The Lie-derivatives in				

a Finsler space and Motion in a Finsler space.

M.A./M.Sc.I (SEMESTER-III), PAPER- IV

Advanced Discrete Mathematics

Course Code:	Credit-5 Max. Marks: 25+75		Fifth Elective paper
B030906T			
Total No. of Lectures-Tutorials (inhours per		Course Title: Advanced Discrete	
week): 4+1=5		Mathematics	
Course outcomes.			

I: Understand the basics of combinatorics, and be able to apply the methods from these subjects inproblem solving.

2: Be able to use effectively algebraic techniques to analyse basic discrete structures and algorithms.

3: To provide a formal connection between algorithmic problem solving and the theory of languages and automata and develop them into a mathematical (abstract) view towards algorithmic design and in general computation itself.

M.A./M.Sc.I (SEMESTER-III), PAPER- V

Introduction to SCILAB /MATLAB

Course Code:	Credit-5		Sixth Elective paper
B030907P	Max. Marks: 50 + 50		
Total No. of Lectur	es-Practicals (in hoursper	Course	Title: Introduction to
week): 2+6		SCILA	B /MATLAB
Course outcomes:			

1: The students will be able to use SciLab/MATLAB in their mathematical problem solving.

2: The students will be able to use these software in working problems related to polynomials and Linear Algebra.

M.A./M.Sc.I (SEMESTER-III), PAPER- V

Introduction to LaTex

Course Code:	Credit-5		Sixth Elective paper
B030908P	Max. Marks: 50+50		
Total No. of Lectures-Practicals (in hours Course Title: I		troduction to LaTex	
per w	veek): 2+6		

Course outcomes:

- 1: The students will be able to know that how the concepts have been developed in Mathematics.
- **2:** The students will be able to different typesetting Mathematical formulae and equations.
- **3:** The students will be able to typeset in different formats including research paper, report and thesis.

M.A./M.Sc.I (SEMESTER-IV), PAPER-I

Advanced Operation Research

Course Code:	Credit-4Max.		Core paper
B031001T	Marks: 25+75		
Total No. of Lectures-Tutorials (in		Course Title: Advanced Operation	
hours per week): 4		Research	

Course outcomes:

1: Student will be able to define Inventory theory and Models.

2: Student will be able to define Quening theory and its characteristics, stochastic Processes understeady and transient states. Study of M/M/1 and M/M/s quening models and Parametric Linear Programming

3: Student will be able to analyse Network analysis, CPM and PERT.

4: Student will be able to define Game theory and Solution of rectangular game with saddle point, Solution of 2×2 game without saddle point. Graphical method of solution for $2\times n$ and $m\times 2$ games.

5: Student will be able to solve Integer Programming problem and Branch and Bound technique.

M.A./M.Sc.I (SEMESTER-IV), PAPER-II

FLUID DYNAMICS

	Credit-4			
Course Code: B031002T	Max. Marks: 25+75		Core paper	
Total No. of Lectures-Tutorials (inhours per		Course Title: FLUID	DYNAMICS	
week): 4				
Course outcomes:				
1: The Students will be able to identify the fundamental concepts of Fluid dynamics and their role				
inmodern mathematics and applied contexts.				
2: The Students will be able to apply the Fluid dynamics concepts to diverse situations in				
physics, engineering, and other mathematical contexts.				

M.A./M.Sc.I (SEMESTER-IV), PAPER-III

Special Functions

Course Code:	Credit-5 Max. Marks: 25+75		Seventh Elective paper	
B031003T				
Total No. of Lectures-Tutorials (inhours per		Course Title: Special Functions		
week): 4+1=5				
Course outcomes:				
1:Student will be able to define Fundamental System of Integrals, Singularity of a Linear				
DifferentialEquation. Series solution to Legendre, Bessel differential equations by Frobenius method.				
2: Student will be able to define Hermite equation and its solution, Generating function, Rodrigue's				
formula, Recurrence relations, Orthogonal Properties of Hermite Polynomials.				
3: Student will be able to define Lagurre equation and its solution.				
4: Student will be able to define Hypergeometric Functions and Series Solution.				

M.A./M.Sc.I (SEMESTER-IV), PAPER-III

Differential Geometry of Manifolds

Course Code: B031004T	Credit-5 Max. Marks: 2	Credit-5 Max. Marks: 25+75		
Total No. of Lectures-Tutorials (inhours		Course Title: Differential Geometry of		
per week): 4+1=5		Manifolds		
Course outcomes:				
1: Students will be able to explain the concept of a manifold and give examples.				
2: Students will be able to define Connections.				
3: Students will be able to define Lie – bracket, Lie – derivative.				
4: Students will be able to analyse Riemannian manifold, Riemannian connection,				
Riemannian curvature tensor, Ricci tensor, scalar curvature, Bianchi identities, constant				
curvature, definition of Einstein manifold, Geodesic in Riemannian manifold, Projective				
curvature tensor.				

M.A./M.Sc.I (SEMESTER-IV), PAPER-III

Advanced Numerical Methods

Course Code:	Credit-5 Max. Marks: 25+75		Seventh Elective Paper	
B031005T				
Total No. of Lectures-Tutorials (inhours per		Course Title: Advanced		
week): 4+1=5		Numerical Methods		
Course outcomes:				
1: Student will be able to solve System of Linear Algebraic Equations, ordinary differential				
equations, and Partial differential equations.				
2: The students will be able to understand and apply various iterative techniques for solving system				
ofalgebraic equations.				
3: The students will be able to analyze the consistency and convergence of a given numerical scheme.				
4: The students will be able to demonstrate familiarity with the basics of finite difference methods for				
thenumerical solution of partial differential equations.				